Cambridge University Press (CUP), Publications of the Astronomical Society of Australia, (34)
DOI: 10.1017/pasa.2017.12
Full text: Unavailable
AbstractWe present observations of thermonuclear (type-I) X-ray bursts, selected for comparison with numerical models. We provide examples of four distinct cases of ignition: He-ignition in mixed H/He fuel (case 1); He-ignition in pure He fuel, following exhaustion of accreted H by steady burning (case 2); ignition in (almost) pure He accumulated from an evolved donor in an ultracompact system; and a superburst, thought to arise from ignition of carbon fuel produced as a by-product of H/He bursts. For regular bursts, we measured the recurrence time and calculated averaged burst profiles from RXTE observations. We also estimated the recurrence time for pairs of bursts, including those observed during a transient outburst, modelled using a numerical ignition code. For each example we list the burst properties including recurrence time, fluence, peak flux, the persistent flux level (and inferred accretion rate), and the ratio of persistent flux to fluence. In the accompanying material, we provide a bolometric lightcurve for each burst, determined from time-resolved spectral analysis. Along with the inferred or adopted parameters for each burst system, including distance, surface gravity, and redshift, these data are suggested as suitable test cases for ignition models.