Published in

CSIRO Publishing, Environmental Chemistry, 3(4), p. 162, 2007

DOI: 10.1071/en07011

Links

Tools

Export citation

Search in Google Scholar

Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Environmental context. The marine environment covers 71% of the Earth’s surface, and accounts for most of the planet’s cloud cover. Water droplets in these clouds all form on pre-existing marine aerosol particles. The number, size and composition of these particles determine the cloud droplet size and consequently, the cloud’s light scattering and precipitation behaviour. Marine aerosols, therefore, have a major influence on the planet’s radiation balance and climate. The origin of marine aerosols is still not completely resolved. The newly developed VH-TDMA technique has been applied to marine aerosols that come from the Southern Ocean. The technique enabled new insights into the composition and structure of these aerosols. It has been found that organic matter constitutes 20–40% of these particles, which suppresses their hygroscopic growth. Abstract. Simultaneous measurement of particle hygroscopic and volatile properties was performed using a VH-TDMA on both Aitken and accumulation mode particles. In addition, deliquescence measurements at different thermodenuder temperatures were also performed. The measurements were part of the P2P campaign which took place in February 2006 at the Cape Grim monitoring station in Tasmania, Australia. During baseline conditions, there was often a volatilisation step that occurred below 125°C in the volatility scans, where up to 25% of the volume is lost. Analysis of the changes in growth as this took place indicates that different substances are responsible for this volatilisation on different days – ammonium nitrate, sulfuric acid, or a volatile non-hygroscopic organic. The major volatilisation in all cases occurred in the temperature range ~140–200°C, which is taken to indicate the presence of ammonium sulfate or ammonium bisulfate. A degree of growth suppression is generally evident before this volatilisation, which indicates that a non-hygroscopic material with a similar volatility to ammonium sulfate/bisulfate may be present, which cannot be distinguished in the volatility scans. Organic matter was typically present at around ~20–40% for these particles. When Aitken and accumulation mode particles were measured on the same day, it was found that the organic content of the smaller particles tended to be higher than the larger particles by roughly 20 percentage points.

Beta version