Published in

European Geosciences Union, Atmospheric Measurement Techniques, 4(12), p. 2387-2401, 2019

DOI: 10.5194/amt-12-2387-2019

Links

Tools

Export citation

Search in Google Scholar

An instrument for the rapid quantification of PM-bound ROS: the Particle Into Nitroxide Quencher (PINQ)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Reactive oxygen species (ROS) present on or generated by particulate matter (PM) have been implicated in PM-induced health effects. Methodologies to quantify ROS concentrations vary widely, both in detection and collection methods. However, there is currently an increasing emphasis on rapid collection and measurement due to observations of short half-life ROS. To address this problem, this paper details the design and characterization of a novel instrument for the measurement of PM-bound ROS named the Particle Into Nitroxide Quencher (PINQ). This instrument combines the 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit) ROS assay in conjunction with a purpose-built aerosol collection device, the insoluble aerosol collector (IAC). The IAC continuously collects PM regardless of size or chemistry directly into a liquid sample with a collection efficiency of > 0.97 and a cut-off size of < 20 nm. The sampling time resolution of the PINQ is 1 min, with a limit of detection (LOD) of 0.08 nmol m−3 in equivalent BPEAnit-Me concentration per volume of air. This high sample time resolution and sensitivity is achieved due to a combination of the highly concentrated IAC liquid sample, minimized liquid sample volume, and the rapid reaction and stability of the BPEAnit probe.

Beta version