Published in

European Geosciences Union, Biogeosciences, 2(7), p. 455-468, 2010

DOI: 10.5194/bg-7-455-2010

Links

Tools

Export citation

Search in Google Scholar

An iron budget during the natural iron fertilisation experiment KEOPS (Kerguelen Islands, Southern Ocean)

Journal article published in 2010 by G. Sarthou, F. Chever, E. Bucciarelli, S. Blain, A. R. Bowie ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Total dissolvable iron (TDFe) was measured in the water column above and in the surrounding of the Kerguelen Plateau (Indian sector of the Southern Ocean) during the KErguelen Ocean Plateau compared Study (KEOPS) cruise. TDFe concentrations ranged from 0.90 to 65.6 nmol L−1 above the plateau and from 0.34 to 2.23 nmol L−1 offshore of the plateau. Station C1 located south of the plateau, near Heard Island, exhibited very high values (329–770 nmol L−1). Apparent particulate iron (Feapp), calculated as the difference between the TDFe and the dissolved iron measured on board (DFe) represented 95±5% of the TDFe above the plateau, suggesting that particles and refractory colloids largely dominated the iron pool. This paper presents a budget of DFe and Feapp above the plateau. Lateral advection of water that had been in contact with the continental shelf of Heard Island seems to be the predominant source of Feapp and DFe above the plateau, with a supply of 9.7±3.6×106 and 8.3±11.6×103 mol d−1, respectively. The residence times of 1.7 and 48 days estimated for Feapp and DFe respectively, indicate a rapid turnover in the surface water. A comparison between Feapp and total particulate iron (TPFe) suggests that the total dissolved fraction is mainly constituted of small refractory colloids. This fraction does not seem to be a potential source of iron to the phytoplankton in our study. Finally, when taking into account the lateral supply of dissolved iron, the seasonal carbon sequestration efficiency was estimated at 154 000 mol C (mol Fe)−1, which is 4-fold lower than the previously estimated value in this area but still 18-fold higher than the one estimated during the other study of a natural iron fertilisation experiment, CROZEX.

Beta version