Published in

The Trans-Neptunian Solar System, p. 307-329, 2020

DOI: 10.1016/b978-0-12-816490-7.00014-x

Links

Tools

Export citation

Search in Google Scholar

From Centaurs to comets: 40 Years

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In 1977, while Apple II and Atari computers were being sold, a tiny dot was observed in an inconvenient orbit. The minor body 1977 UB, to be named (2060) Chiron, with an orbit between Saturn and Uranus, became the first Centaur, a new class of minor bodies orbiting roughly between Jupiter and Neptune. The observed overabundance of short-period comets lead to the downfall of the Oort cloud as exclusive source of comets and to the rise of the need for a Trans-Neptunian comet belt. Centaurs were rapidly seen as the transition phase between Kuiper belt objects, also known as Trans-Neptunian objects (TNOs) and the Jupiter-family comets (JFCs). Since then, a lot more has been discovered about Centaurs: They can have cometary activity and outbursts, satellites, and even rings. Over the past four decades since the discovery of the first Centaur, rotation periods, surface colors, reflectivity spectra, and albedos have been measured and analyzed. However, despite such a large number of studies and complementary techniques, the Centaur population remains a mystery as they are in so many ways different from the TNOs and even more so from the JFCs.

Beta version