Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(489), p. 2313-2322, 2019

DOI: 10.1093/mnras/stz2110

Links

Tools

Export citation

Search in Google Scholar

Ploonets: formation, evolution, and detectability of tidally detached exomoons

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Close-in giant planets represent the most significant evidence of planetary migration. If large exomoons form around migrating giant planets which are more stable (e.g. those in the Solar system), what happens to these moons after migration is still under intense research. This paper explores the scenario where large regular exomoons escape after tidal interchange of angular momentum with its parent planet, becoming small planets by themselves. We name this hypothetical type of object a ploonet. By performing semi-analytical simulations of tidal interactions between a large moon with a close-in giant, and integrating numerically their orbits for several Myr, we found that in ∼50 per cent of the cases a young ploonet may survive ejection from the planetary system, or collision with its parent planet and host star, being in principle detectable. Volatile-rich ploonets are dramatically affected by stellar radiation during both planetocentric and siderocentric orbital evolution, and their radius and mass change significantly due to the sublimation of most of their material during time-scales of hundreds of Myr. We estimate the photometric signatures that ploonets may produce if they transit the star during the phase of evaporation, and compare them with noisy light curves of known objects (Kronian stars and non-periodical dips in dusty light curves). Additionally, the typical transit timing variations (TTV) induced by the interaction of a ploonet with its planet are computed. We find that present and future photometric surveys’ capabilities can detect these effects and distinguish them from those produced by other nearby planetary encounters.

Beta version