Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(496), p. 1834-1844, 2020

DOI: 10.1093/mnras/staa1675

Links

Tools

Export citation

Search in Google Scholar

Atacama Compact Array observations of the pulsar-wind nebula of SNR 0540-69.3

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present observations of the pulsar-wind nebula (PWN) region of SNR 0540-69.3. The observations were made with the Atacama Compact Array (ACA) in Bands 4 and 6. We also add radio observations from the Australia Compact Array at 3 cm. For 1.449–233.50 GHz, we obtain a synchrotron spectrum $F_{ν } ∝ ν ^{-α _{ν }}$, with the spectral index αν = 0.17 ± 0.02. To conclude how this joins the synchrotron spectrum at higher frequencies, we include hitherto unpublished AKARI mid-infrared data, and evaluate published data in the ultraviolet (UV), optical, and infrared (IR). In particular, some broad-band filter data in the optical must be discarded from our analysis due to contamination by spectral line emission. For the UV/IR part of the synchrotron spectrum, we arrive at $α _{ν } = 0.87^{+0.08}_{-0.10}$. There is room for 2.5 × 10−3 M⊙ of dust with a temperature of ∼55 K if there are dual breaks in the synchrotron spectrum, one around ∼9 × 1010 Hz and another at ∼2 × 1013 Hz. The spectral index then changes at ∼9 × 1010 Hz from αν = 0.14 ± 0.07 in the radio to $α _{ν } = 0.35^{-0.07}_{+0.05}$ in the millimetre-to-far-IR range. The ACA Band 6 data marginally resolve the PWN. In particular, the strong emission $\text{$\sim$} 1\hbox{$.\!\!^{\prime \prime }$}5$ south-west of the pulsar, seen at other wavelengths, and resolved in the 3 cm data with its 0.″8 spatial resolution, is also strong in the millimetre range. The ACA data clearly reveal the supernova remnant shell ∼20–35 arcsec west of the pulsar, and for the shell we derive αν = 0.64 ± 0.05 for the range 8.6–145 GHz.

Beta version