Published in

Oxford University Press (OUP), Publications of Astronomical Society of Japan, 5(71), 2019

DOI: 10.1093/pasj/psz081

Links

Tools

Export citation

Search in Google Scholar

Concept for an X-ray telescope system with an angular resolution booster

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present a concept for an X-ray imaging system with a high angular resolution and moderate sensitivity. In this concept, a two-dimensional detector, i.e., an imager, is put at a slightly out-of-focus position of the focusing mirror, rather than just at the mirror focus, as in the standard optics, to capture miniature images of objects. In addition, a set of multi-grid masks (or a modulation collimator) is installed in front of the telescope. We find that the masks work as a coded aperture camera and that they boost the angular resolution of the focusing optics. The major advantage of this concept is that a much better angular resolution, having an order of 2–3 or more than in the conventional optics, is achievable, while a high throughput (large effective area) is maintained, which is crucial in photon-limited high-energy astronomy, because any type of mirrors, including lightweight reflective mirrors, can be employed in our concept. If the signal-to-noise ratio is sufficiently high, we estimate that angular resolutions at the diffraction limit of 4″ and 0.″4 at ∼7 keV can be achieved with a pair of masks at distances of 1 m and 100 m, respectively.

Beta version