Published in

Annual Reviews, Annual Review of Analytical Chemistry, 1(11), p. 397-419, 2018

DOI: 10.1146/annurev-anchem-061417-010022

Links

Tools

Export citation

Search in Google Scholar

Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media

Journal article published in 2018 by Cameron L. Bentley, Alan M. Bond ORCID, Jie Zhang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H+) transfer and electrode reaction mechanisms of the H+/H2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the p Ka (minus logarithm of acidity equilibrium constant, Ka) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H+/H2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents.

Beta version