Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S302(9), p. 48-49, 2013

DOI: 10.1017/s1743921314001707

Links

Tools

Export citation

Search in Google Scholar

X-rays from accretion shocks in classical T Tauri stars: 2D MHD modeling and the role of local absorption

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractIn classical T Tauri stars (CTTS) strong shocks are formed where the accretion funnel impacts with the denser stellar chromosphere. Although current models of accretion provide a plausible global picture of this process, some fundamental aspects are still unclear: the observed X-ray luminosity in accretion shocks is order of magnitudes lower than predicted; the observed density and temperature structures of the hot post-shock region are puzzling and still unexplained by models.To address these issues we performed 2D MHD simulations describing an accretion stream impacting onto the chromosphere of a CTTS, exploring different configurations and strengths of the magnetic field. From the model results we then synthesized the X-ray emission emerging from the hot post-shock, taking into account the local absorption due to the pre-shock stream and surrounding atmosphere.We find that the different configurations and strengths of the magnetic field profoundly affect the hot post-shock properties. Moreover the emerging X-ray emission strongly depends also on the viewing angle under which accretion is observed. Some of the explored configuration are able to reproduce the observed features of X-ray spectra of CTTS.

Beta version