Published in

American Association for the Advancement of Science, Science Advances, 8(5), p. eaax3346, 2019

DOI: 10.1126/sciadv.aax3346

Links

Tools

Export citation

Search in Google Scholar

Ultrafast time-resolved x-ray scattering reveals diffusive charge order dynamics in La2–xBaxCuO4

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Charge order is universal among high-Tc cuprates, but its relation to superconductivity is unclear. While static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. Using time-resolved resonant soft x-ray scattering at a free-electron laser, we show that the charge order in prototypical La2−xBaxCuO4 exhibits transverse fluctuations at picosecond time scales. These sub–millielectron volt excitations propagate by Brownian-like diffusion and have an energy scale remarkably close to the superconducting Tc. At sub–millielectron volt energy scales, the dynamics are governed by universal scaling laws defined by the propagation of topological defects. Our results show that charge order in La2−xBaxCuO4 exhibits dynamics favorable to the in-plane superconducting tunneling and establish time-resolved x-rays as a means to study excitations at energy scales inaccessible to conventional scattering techniques.

Beta version