Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S293(8), p. 244-249, 2012
DOI: 10.1017/s1743921313012921
Full text: Unavailable
AbstractRecent simulations show long -lived sub- and super-Keplerian flows in protoplanetary disks. These so-called zonal flows are found in local as well as global simulations of magneto-rotationally unstable disks. We investigate the strength and life-time of the resulting long-lived gas over- and under-densities as well as particle concentrations function of the azimuthal and radial size of the local shearing box. Changes in the azimuthal extent do not affect the zonal flow features. However, strength and life-time of zonal flows increase with increasing radial box sizes. Our simulations show indications, and support earlier results, that zonal flows have a natural length scale of approximately 5 pressure scale heights. For the first time, the reaction of dust particles in boxes with zonal flows are studied. We show that particles of some centimeters in size reach a hundred-fold higher density than initially, without any self-gravitating forces acting on the point masses. We further investigate collision velocities of dust grains in a turbulent medium.