Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S254(4), p. 127-132, 2008
DOI: 10.1017/s174392130802749x
Full text: Unavailable
AbstractWe present our recent results on the cosmic evolution of the outskirts of disk galaxies. In particular we focus on disk–like galaxies with stellar disk truncations. Using UDF, GOODS and SDSS data we show how the position of the break (i.e. a direct estimator of the size of the stellar disk) evolves with time since z~1. Our findings agree with an evolution on the radial position of the break by a factor of 1.3 ± 0.1 in the last 8 Gyr for galaxies with similar stellar masses. We also present radial color gradients and how they evolve with time. At all redshifts we find a radial inside-out bluing reaching a minimum at the position of the break radius, this minimum is followed by a reddening outwards. Our results constraint several galaxy disk formation models and favour a scenario where stars are formed inside the break radius and are relocated in the outskirts of galaxies through secular processes.