Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(490), p. 359-370, 2019

DOI: 10.1093/mnras/stz2375

Links

Tools

Export citation

Search in Google Scholar

The influence of inclinations on the dynamical stability of multi-planet systems

Journal article published in 2019 by Ying Wang ORCID, Ji-Lin Zhou, Fu-Yao Liu, Wei Sun, Hui-Gen Liu, Ming Yang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT A type of compactly spaced and comparably sized multi-exoplanet system similar to TRAPPIST-1 has been discovered recently. The stability of these systems is an important issue, requiring further study. We examined how the initial inclinations influence the stability of multi-planet systems and derived an empirical formula describing the dependence of the instability time-scale on planetary mass, space separation and initial inclination. We find the following. (i) If space separations between planets are greater than 12RH (mutual Hill radius), coplanar multi-planet systems with 10−6 ≤ μ ≤ 10−3 (reduced planetary mass μ = m/M*) will remain stable within 1010Tin (the innermost orbital period). (ii) If initial inclinations of planets are smaller than 10° and space separations are greater than 10RH, multi-planet systems consisting of ≥5 planets with μ ≥ 10−5 will remain stable within 1010Tin. (iii) Initial inclinations in [0°, 10°] have inconsequential effects on the instability time-scales of massive multi-planet systems (μ ≥ 10−5), because eccentricities (excited during evolution) dominate the stability of these systems. (iv) If the initial inclinations are large enough (≥10°), sharp increases of instability time-scales in groups with 10−3 ≥ μ ≥ 10−5 will be moderated. This article presents a comprehensive study of the influence of inclination on the stability of multi-planet systems and discusses critical space separations for a multi-planet system becoming unstable.

Beta version