Published in

Astronomy & Astrophysics, (628), p. A131, 2019

DOI: 10.1051/0004-6361/201935465

Links

Tools

Export citation

Search in Google Scholar

STEPAR: an automatic code to infer stellar atmospheric parameters

Journal article published in 2019 by H. M. Tabernero, E. Marfil, D. Montes ORCID, J. I. González Hernández ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. STEPAR is an automatic code written in Python 3.X designed to compute the stellar atmospheric parameters Teff, log g, [Fe/H], and ξ of FGK-type stars by means of the equivalent width (EW) method. This code has already been extensively tested in different spectroscopic studies of FGK-type stars with several spectrographs and against thousands of Gaia-ESO Survey UVES U580 spectra of late-type, low-mass stars as one of its 13 pipelines. Aims. We describe the code that we tested against a library of well characterised Gaia benchmark stars. We also release the code to the community and provide the link for download. Methods. We carried out the required EW determination of Fe I and Fe II spectral lines using the automatic tool TAME. STEPAR implements a grid of MARCS model atmospheres and the MOOG radiative transfer code to compute stellar atmospheric parameters by means of a Downhill Simplex minimisation algorithm. Results. We show the results of the benchmark star test and also discuss the limitations of the EW method, and hence the code. In addition, we find a small internal scatter for the benchmark stars of 9 ± 32 K in Teff, 0.00 ± 0.07 dex in log g, and 0.00 ± 0.03 dex in [Fe/H]. Finally, we advise against using STEPAR on double-lined spectroscopic binaries or spectra with R < 30 000, S/N < 20, or v sin i > 15 km s−1, and on stars later than K4 or earlier than F6.

Beta version