Published in

International Astronomical Union Colloquium, (182), p. 119-122, 2001

DOI: 10.1017/s0252921100000816

Sources and Scintillations, p. 119-122, 2001

DOI: 10.1007/978-94-010-1001-6_22

Links

Tools

Export citation

Search in Google Scholar

Multifrequency Polarization Variations in 0917+624

Journal article published in 2001 by S. J. Qian, A. Kraus, T. P. Krichbaum ORCID, A. Witzel, J. A. Zensus
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractIntraday variability in compact flat-spectrum radio sources has been intensively studied in recent years. For most IDV events the apparent brightness temperatures derived from the observed timescales are in the range of Tb,app ~ 1016−18 K. For extremely rapid variations, Tb,app can reach up to ~ 1021 K (e.g. Kedziora-Chudczer et al., 1997). Refractive interstellar scintillation may be the most likely extrinsic mechanism (Rickett et al., 1995; Qian, 1994a; Qian, 1994b). Especially for the case of extreme Tb,app (> 1018 K) RISS may be dominant (Dennet-Thorpe and de Bruyn, 2000). However, some IDV events with Tapp ~ 1017−18 K show evidence for an intrinsic origin e.g. the correlated radio-optical intraday variations observed in the BL Lac object 0716+714 (Wagner and Witzel, 1995, Qian et al, 1996). It seems important to distinguish between IDV which is a phenomenon intrinsic to the compact radio sources and IDV which is primarily due to RISS. Multifrequency polarization and VLB I observations would be most helpful (Gabuzda and Kochanev, 1997).

Beta version