Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S253(4), p. 532-535, 2008

DOI: 10.1017/s1743921308027130

Links

Tools

Export citation

Search in Google Scholar

Absorption Spectra of the Prototype Hot-Jupiters: determination of atmospheric constituents and structure

Journal article published in 2008 by David K. Sing ORCID, A. Lecavelier, J.-M. Désert, A. Vidal-Madjar, G. Ballester
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe two prototype hot-Jupiter exoplanets HD209458b and HD189733b are currently offering an unprecedented view of their atmospheres. As discussed here, primary transit transmission spectra provide the opportunity to identify specific atomic and molecular species, determine their abundances, and recover temperature-pressure-altitude information. We present a reanalysis of existing HST/STIS data on HD209458b, providing a complete optical transmission spectrum. Analysis of this spectrum have revealed: (1) the planetary abundance of sodium which is ~2X solar (2) a depletion of sodium at high altitudes due to condensation or ionization (3) Rayleigh scattering by H2 (3) a high temperature at pressures of 10's mbar consistent with the dayside inversion (4) a separate high-altitude hot temperature from the planet's thermosphere and (5) likely absorption by TiO/VO. While HD209458b and HD189733b are currently the best candidates for these studies, another ~10 exoplanets are good targets with today's instruments for future transmission-based atmospheric detections.

Beta version