Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz3217

Links

Tools

Export citation

Search in Google Scholar

Revisiting the long term X-ray spectral evolution of Seyfert 1 galaxies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Characterizing the long-term variability of AGNs is a key legacy of RXTE. We carry out a spectral analysis on a sample of 20 Seyfert 1 galaxies, which had been observed by the RXTE for at least 100 times. All 18,335 spectra are fitted in a uniform way using a power-law component plus an additional Gaussian line when necessary. For any source in our sample, we confirm that the spectrum softens or the photon index, Γ, increases with increasing the 2–10 keV luminosity, LX. However, different source holds distinct Γ − LX/LEdd relation, rather than a common one. We also fit the correlation with a function of Γ = C + β × log (flux), where C is a constant and parameter β is the slope of the correlation. In this way, the increase speed of the Γ − LX/LEdd relation can be depicted with the parameter β. Since our sample contains a large sample of long-term monitored sources, it allows us to explore the second order effect of spectral evolution. We find that there is an anti-correlation between β and the X-ray Eddington ratio, LX/LEdd. That is, the increasing tendency of Γ with increasing X-ray luminosity becomes slower when the source has a larger X-ray Eddington ratio. Our results may indicate changes in the geometry and/or the viscosity parameter of the accretion disc at different Eddington ratios.

Beta version