Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(487), p. 5335-5345, 2019

DOI: 10.1093/mnras/stz1622

Links

Tools

Export citation

Search in Google Scholar

Evolution of the hard X-ray photon index in black-hole X-ray binaries: hints for accretion physics

Journal article published in 2019 by Hao Liu, AiJun Dong, ShanShan Weng ORCID, Qingwen Wu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Negative and positive correlations between the X-ray photon index and the Eddington-scaled X-ray luminosity were found in the decay phase of X-ray binary outbursts and a sample of active galactic nuclei in former works. We systematically investigate the evolution of the X-ray spectral index, along with the X-ray flux and Eddington ratio, in eight outbursts of four black-hole X-ray binaries, where all selected outbursts have observational data from the Rossi X-ray Timing Explorer in both rise and decay phases. In the initial rise phase, the X-ray spectral index is anticorrelated with the flux and the X-ray spectrum quickly softens when the X-ray flux is approaching the peak value. In the decay phase, the X-ray photon index and the flux follow two different positive correlations and they become anticorrelated again when the X-ray flux is below a critical value, where the anticorrelation part follows the same trend as found in the initial rise phase. Compared with other X-ray binaries, GRO J1655−40 has an evident lower critical Eddington ratio for the anticorrelation and positive transition, which suggests that its black-hole mass and distance are not well constrained, or its intrinsic physics is different.

Beta version