Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S295(8), p. 316-316, 2012

DOI: 10.1017/s1743921313005188

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(425), p. 841-861, 2012

DOI: 10.1111/j.1365-2966.2012.21079.x

Links

Tools

Export citation

Search in Google Scholar

Stellar population gradients in brightest cluster galaxies

Journal article published in 2012 by S. I. Loubser ORCID, P. Sánchez-Blázquez
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present the stellar population and velocity dispersion gradients for a sample of 24 brightest cluster galaxies (BCGs) in the nearby Universe for which we have obtained high quality long-slit spectra at the Gemini telescopes. With the aim of studying the possible connection between the formation of the BCGs and their host clusters, we explore the relations between the stellar population gradients and properties of the host clusters, as well as the possible connections between the stellar population gradients and other properties of the galaxies. We find mean stellar population gradients (negative Δ[Z/H]/log r gradient of − 0.285 ± 0.064; small positive Δlog(age)/log r gradient of +0.069 ± 0.049; and null Δ[E/Fe]/log r gradient of -0.008 ± 0.032), that are consistent with those of normal massive elliptical galaxies. However, we find a trend between metallicity gradients and velocity dispersion (with a negative slope of − 1.616 ± 0.539), that is not found for the most massive ellipticals. Furthermore, we find trends between the metallicity gradients and K-band luminosities (with a slope of 0.173 ± 0.081) as well as the distance from the BCG to the X-ray peak of the host cluster (with a slope of − 7.546 ± 2.752). The latter indicates a possible relation between the formation of the cluster and that of the central galaxy.

Beta version