Published in

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 1(14), p. 1-29, 2014

DOI: 10.5194/acpd-14-1-2014

Links

Tools

Export citation

Search in Google Scholar

Variability of NOx in the polar middle atmosphere from October 2003 to March 2004: vertical transport versus local production by energetic particles

Journal article published in 2014 by M. Sinnhuber, B. Funke ORCID, T. von Clarmann, M. Lopez-Puertas ORCID, G. P. Stiller ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We use NO, NO2 and CO from MIPAS/ENVISAT to investigate the impact of energetic particle precipitation onto the NOx budget from the stratosphere to the lower mesosphere in the period from October 2003 to March 2004, a time of high solar and geomagnetic activity. We find that in the winter hemisphere the indirect effect of auroral electron precipitation due to downwelling of upper mesospheric/lower thermospheric air into the stratosphere prevails. Its effect exceeds even the direct impact of the very large solar proton event in October/November 2003 by nearly one order of magnitude. Correlations of NOx and CO show that the unprecedented high NOx values observed in the Northern Hemisphere lower mesosphere and upper stratosphere in late January and early February are fully consistent with transport from the upper mesosphere/lower thermosphere and subsequent mixing at lower altitudes; an additional source of NOx due to local production by precipitating electrons at altitudes below 70 km as discussed in previous publications appears unlikely. In the polar summer Southern Hemisphere, we observed an enhanced variability of NO and NO2 on days with enhanced geomagnetic activity but they seem to indicate enhanced instrument noise rather than a direct increase due to electron precipitation. A direct effect of electron precipitation onto NOx can not be ruled out, but if any, it is lower than 3 ppb in the altitude range 40–56 km and lower than 6 ppb in the altitude range 56–70 km.

Beta version