European Geosciences Union, Annales Geophysicae, 11(26), p. 3511-3524, 2008
DOI: 10.5194/angeo-26-3511-2008
Full text: Download
<p><strong>Abstract.</strong> Electrons with energy of ~40–80 eV measured by the instrument ASPERA-3 on Mars Express and MAG-ER onboard Mars Global Surveyor are used to trace an access of solar wind electrons into the Martian magnetosphere. Crustal magnetic fields create an additional protection from solar wind plasma on the dayside of the Southern Hemisphere by shifting the boundary of the induced magnetosphere (this boundary is often refereed as the magnetic pileup boundary) above strong crustal sources to ~400 km as compared to the Northern Hemisphere. Localized intrusions through cusps are also observed. On the nightside an access into the magnetosphere depends on the IMF orientation. Negative values of the <I>B<sub>y</I>IMF</sub> component assist the access to the regions with strong crustal magnetizations although electron fluxes are strongly weakened below ~600 km. A precipitation pattern at lower altitudes is formed by intermittent regions with reduced and enhanced electron fluxes. The precipitation sites are longitudinally stretched narrow bands in the regions with a strong vertical component of the crustal field. Fluxes &ge;10<sup>9</sup> cm<sup>&minus;2</sup> s<sup>&minus;1</sup> of suprathermal electrons necessary to explain the observed aurora emissions are maintained only for the periods with enhanced precipitation. The appearance of another class of electron distributions – inverted V structures, characterized by peaks on energy spectra, is controlled by the IMF. They are clustered in the hemisphere pointed by the interplanetary electric field that implies a constraint on their origin.</p>