Published in

Astronomy & Astrophysics, (625), p. L3, 2019

DOI: 10.1051/0004-6361/201935556

Links

Tools

Export citation

Search in Google Scholar

Direct estimation of electron density in the Orion Bar PDR from mm-wave carbon recombination lines

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (ne) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules. Aims. We determine ne in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13C II] hyperfine line observations. Methods. We detect 12 mmCRLs (including α, β, and γ transitions) observed with the IRAM 30 m telescope, at ∼25″ angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. Results. These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent H II region. This is readily seen from their narrow line profiles (Δv = 2.6 ± 0.4 km s−1) and line peak velocities (vLSR = +10.7 ± 0.2 km s−1). Optically thin [13C II] hyperfine lines and molecular lines – emitted close to the DF by trace species such as reactive ions CO+ and HOC+ – show the same line profiles. We use non-LTE excitation models of [13C II] and mmCRLs and derive ne = 60–100 cm−3 and Te = 500–600 K toward the DF. Conclusions. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain Pth ≥ (2−4) × 108 cm−3 K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.

Beta version