Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S274(6), p. 445-448, 2010

DOI: 10.1017/s1743921311007459

Links

Tools

Export citation

Search in Google Scholar

Magnetic field amplification by relativistic shocks in a turbulent medium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneities, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in our two-dimensional simulations. The magnetic energy spectrum is flatter than Kolmogorov and indicates that a so-called small-scale dynamo is operating in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field.

Beta version