Published in

World Scientific Publishing, International Journal of Modern Physics D, 03(20), p. 299-317, 2011

DOI: 10.1142/s0218271811018822

Links

Tools

Export citation

Search in Google Scholar

An Empirical Model of Production and Attenuation of Fluorescence Light in Atmosphere for Satellite-Based Ultra High Energy Cosmic Ray Experiments

Journal article published in 2011 by E. Strazzeri, O. Catalano ORCID, B. Sbarufatti
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the context of detection of Ultra High Energy Cosmic Ray (UHECR) showers from space the details of fluorescence light production and transmission in the atmosphere are given. An analytical model of the fluorescence yield, in dependence on nitrogen molecular parameters and the atmospheric conditions, is presented. Seasonal and geographical variations of the total fluorescence photon yield between 300 nm and 400 nm in air excited by 0.85 MeV electrons are shown as a function of the altitude, using different atmospheric models. In the frame of a satellite-based UHECR experiment the fluorescence yield has been corrected by the overall atmospheric transmission which takes into account, in the simplest approximation, the wavelength-dependent scattering and absorption of the fluorescence light from air molecules, from stratospheric ozone, and from aerosol. The effect of the atmospheric attenuation on the fluorescence yield is shown as a function of the altitude of the emission point of light.

Beta version