Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S308(11), p. 47-56, 2014

DOI: 10.1017/s1743921316009613

Links

Tools

Export citation

Search in Google Scholar

Understanding the cosmic web

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the \nexus{} algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the very intricate and hierarchical pattern that is the cosmic web. In particular, we characterising filaments (walls) in terms of their linear (surface) mass density, which is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We show also that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expanding underdense regions.

Beta version