Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S332(13), p. 95-102, 2017
DOI: 10.1017/s1743921317007050
Full text: Unavailable
AbstractResults are presented from our ongoing studies of Titan using ALMA during the period 2012-2015, including a confirmation of the previous detection of vinyl cyanide (C2H3CN), as well as the first spatial map for this species on Titan. Simultaneous mapping of HC3N, CH3CN and C2H5CN reveal characteristic abundance patterns for each species that provide insight into their individual photochemical lifetimes, and help inform our understanding of Titan’s unique, time-variable atmospheric chemistry and global circulation. A time-sequence of HC3N maps covering 38 months reveals a dramatic change in the distribution of this gas consistent with high-altitude photochemical production followed by advection towards the southern (winter) pole, combined with rapid loss in the north after Titan’s 2009 seasonal equinox. The 2015 C2H3CN and C2H5CN maps show abundance peaks in Titan’s southern hemisphere, similar to those observed for the short-lived HC3N molecule. The longer-lived CH3CN, on the other hand, remains more concentrated in the north.