Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 3(486), p. 3415-3422, 2019

DOI: 10.1093/mnras/stz1008

Links

Tools

Export citation

Search in Google Scholar

Probing the unidentified Fermi blazar-like population using optical polarization and machine learning

Journal article published in 2019 by I. Liodakis ORCID, D. Blinov ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The Fermi γ-ray space telescope has revolutionized our view of the γ-ray sky and the high-energy processes in the Universe. While the number of known γ-ray emitters has increased by orders of magnitude since the launch of Fermi, there is an ever increasing number of, now more than a thousand, detected point sources whose low-energy counterpart is to this day unknown. To address this problem, we combined optical polarization measurements from the RoboPol survey as well as other discriminants of blazars from publicly available all-sky surveys in machine learning (ML, random forest and logistic regression) frameworks that could be used to identify blazars in the Fermi unidentified fields with an accuracy of >95 per cent. Out of the potential observational biases considered, blazar variability seems to have the most significant effect reducing the predictive power of the frameworks to ${∼ }80\hbox{-}85{{\ \rm per\ cent}}$. We apply our ML framework to six unidentified Fermi fields observed using the RoboPol polarimeter. We identified the same candidate source proposed by Mandarakas et al. for 3FGL J0221.2 + 2518.

Beta version