Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(490), p. 2507-2520, 2019

DOI: 10.1093/mnras/stz2690

Links

Tools

Export citation

Search in Google Scholar

Simulating galaxy formation in f(R) modified gravity: matter, halo, and galaxy statistics

Journal article published in 2019 by Christian Arnold ORCID, Baojiu Li ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present an analysis of the matter, halo, and galaxy clustering in f(R)-gravity employing the SHYBONE full-physics hydrodynamical simulation suite. Our analysis focuses on the interplay between baryonic feedback and f(R)-gravity in the matter power spectrum, the matter and halo correlation functions, the halo and galaxy–host–halo mass function, the subhalo and satellite–galaxy count, and the correlation function of the stars in our simulations. Our studies of the matter power spectrum in full-physics simulations in f(R)-gravity show that it will be very difficult to derive accurate fitting formulae for the power spectrum enhancement in f(R)-gravity which include baryonic effects. We find that the enhancement of the halo mass function due to f(R)-gravity and its suppression due to feedback effects do not show significant back-reaction effects and can thus be estimated from independent general relativity-hydro and f(R) dark matter only simulations. Our simulations furthermore show that the number of subhaloes and satellite-galaxies per halo is not significantly affected by f(R)-gravity. Low-mass haloes are nevertheless more likely to be populated by galaxies in f(R)-gravity. This suppresses the clustering of stars and the galaxy correlation function in the theory compared to standard cosmology.

Beta version