Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S305(10), p. 175-180, 2014

DOI: 10.1017/s174392131500472x

Links

Tools

Export citation

Search in Google Scholar

Preliminary status of POLICAN: A near-infrared imaging polarimeter

Journal article published in 2014 by R. Devaraj, A. Luna, L. Carrasco, Y. D. Mayya ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPOLICAN is a near-infrared (J, H, K) imaging polarimeter developed for the Cananea near infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. The camera has a 1024 x 1024 HgCdTe detector (HAWAII array) with a plate scale of 0.32 arcsec/pixel providing a field of view of 5.5 x 5.5 arcmin. POLICAN is mounted externally to CANICA for narrow-field (f/12) linear polarimetric observations. It consists of a rotating super achromatic (1-2.7μm) half waveplate and a fixed wire-grid polarizer as the analyzer. The light is modulated by setting the half waveplate at different angles (0○, 22.5○, 45○, 67.5○) and linear combinations of the Stokes parameters (I, Q and U) are obtained. Image reduction and removal of instrumental polarization consist of dark noise subtraction, polarimetric flat fielding and background sky subtraction. Polarimetric calibration is performed by observing polarization standards available in the literature. The astrometry correction is performed by matching common stars with the Two Micron All Sky Survey. POLICAN's bright and limiting magnitudes are approximately 6th and 16th magnitude, which correspond to saturation and photon noise, respectively. POLICAN currently achieves a polarimetric accuracy about 3.0% and polarization angle uncertainties within 3○. Preliminary observations of star forming regions are being carried out in order to study their magnetic field properties.

Beta version