Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2020

DOI: 10.1093/mnras/staa1149

Links

Tools

Export citation

Search in Google Scholar

Dust Condensation in Evolving Discs and the Composition of Planetary Building Blocks

Journal article published in 2020 by Min Li ORCID, Shichun Huang, Michail I. Petaev, Zhaohuan Zhu ORCID, Jason H. Steffen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical-chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the midplane temperature in the disc is lower than the 50% condensation temperature ($\rm T_{50}$) of that element and the other where the condensation of the dust is calculated by a Gibbs free energy minimization technique assuming chemical equilibrium at local disc temperature and pressure. The results of two models are generally consistent with some systematic differences of ∼10% depending upon the radial distance and an element’s condensation temperature. Both models predict compositions similar to CM, CO, and CV chondrites provided that the decoupling timescale of the dust is on the order of the evolution timescale of the disc or longer. If the decoupling timescale is too short, the composition deviates significantly from the measured values. These models may contribute to our understanding of the chemical compositions of chondrites, and ultimately the terrestrial planets in the solar system, and may constrain the potential chemical compositions of rocky exoplanets.

Beta version