Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz3232

Links

Tools

Export citation

Search in Google Scholar

Morphological signatures induced by dust back reaction in discs with an embedded planet

Journal article published in 2019 by Chao-Chin Yang ORCID, Zhaohuan Zhu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Recent observations have revealed a gallery of substructures in the dust component of nearby protoplanetary discs, including rings, gaps, spiral arms, and lopsided concentrations. One interpretation of these substructures is the existence of embedded planets. Not until recently, however, most of the modelling effort to interpret these observations ignored the dust back reaction to the gas. In this work, we conduct local-shearing-sheet simulations for an isothermal, inviscid, non-self-gravitating, razor-thin dusty disc with a planet on a fixed circular orbit. We systematically examine the parameter space spanned by planet mass (0.1Mth ≤ Mp ≤ 1Mth, where Mth is the thermal mass), dimensionless stopping time (10−3 ≤ τs ≤ 1), and solid abundance (0 < Z ≤ 1). We find that when the dust particles are tightly coupled to the gas (τs < 0.1), the spiral arms are less open and the gap driven by the planet becomes deeper with increasing Z, consistent with a reduced speed of sound in the approximation of a single dust-gas mixture. By contrast, when the dust particles are marginally coupled (0.1 ≲ τs ≲ 1), the spiral structure is insensitive to Z and the gap structure in the gas can become significantly skewed and unidentifiable. When the latter occurs, the pressure maximum radially outside of the planet is weakened or even extinguished, and hence dust filtration by a low-mass (Mp < Mth) planet could be reduced or eliminated. Finally, we find that the gap edges where the dust particles are accumulated as well as the lopsided large-scale vortices driven by a massive planet, if any, are unstable, and they are broken into numerous small-scale dust-gas vortices.

Beta version