Published in

Astronomy & Astrophysics, (616), p. A89, 2018

DOI: 10.1051/0004-6361/201832770

Links

Tools

Export citation

Search in Google Scholar

Inelastic O+H collisions and the O I 777 nm solar centre-to-limb variation

Journal article published in 2018 by A. M. Amarsi ORCID, P. S. Barklem, M. Asplund, R. Collet, O. Zatsarinny
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The O I 777 nm triplet is a key diagnostic of oxygen abundances in the atmospheres of FGK-type stars; however, it is sensitive to departures from local thermodynamic equilibrium (LTE). The accuracy of non-LTE line formation calculations has hitherto been limited by errors in the inelastic O+H collisional rate coefficients; several recent studies have used the Drawin recipe, albeit with a correction factor SH that is calibrated to the solar centre-to-limb variation of the triplet. We present a new model oxygen atom that incorporates inelastic O+H collisional rate coefficients using an asymptotic two-electron model based on linear combinations of atomic orbitals, combined with a free electron model based on the impulse approximation. Using a 3D hydrodynamic STAGGER model solar atmosphere and 3D non-LTE line formation calculations, we demonstrate that this physically motivated approach is able to reproduce the solar centre-to-limb variation of the triplet to 0.02 dex, without any calibration of the inelastic collisional rate coefficients or other free parameters. We infer log ϵO = 8.69 ± 0.03 from the triplet alone, strengthening the case for a low solar oxygen abundance.

Beta version