Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S346(14), p. 178-186, 2018

DOI: 10.1017/s1743921319001145

Links

Tools

Export citation

Search in Google Scholar

Investigating High Mass X-ray Binaries at hard X-rays with INTEGRAL

Journal article published in 2018 by Lara Sidoli ORCID, Adamantia Paizis ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe INTEGRAL archive developed at INAF-IASF Milano with the available public observations from late 2002 to 2016 is investigated to extract the X-ray properties of 58 High Mass X-ray Binaries (HMXBs). This sample consists of sources hosting either a Be star (Be/XRBs) or an early-type supergiant companion (SgHMXBs), including the Supergiant Fast X-ray Transients (SFXTs). INTEGRAL light curves (sampled at 2 ks) are used to build their hard X-ray luminosity distributions, returning the source duty cycles, the range of variability of the X-ray luminosity and the time spent in each luminosity state. The phenomenology observed with INTEGRAL, together with the source variability at soft X-rays taken from the literature, allows us to obtain a quantitative overview of the main sub-classes of massive binaries in accretion (Be/XRBs, SgHMXBs and SFXTs). Although some criteria can be derived to distinguish them, some SgHMXBs exist with intermediate properties, bridging together persistent SgHMXBs and SFXTs.

Beta version