Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(494), p. 868-875, 2020

DOI: 10.1093/mnras/staa707

Links

Tools

Export citation

Search in Google Scholar

H–He collision-induced satellite in the Lyman α profile of DBA white dwarf stars

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The spectra of helium-dominated white dwarf stars with hydrogen in their atmosphere present a distinctive broad feature centred around 1160 Å in the blue wing of the Lyman α line. It is extremely apparent in WD 1425+540 recently observed with Hubble Space Telescope(HST) Cosmic Origins Spectrograph (COS). With new theoretical line profiles based on ab initio atomic interaction potentials we show that this feature is a signature of a collision-induced satellite due to an asymptotically forbidden transition. This quasi-molecular spectral satellite is crucial to understanding the asymmetrical shape of Lyman α seen in this and other white dwarf spectra. Our previous work predicting this absorption feature was limited by molecular potentials that were not adequate to follow the atomic interactions with spectroscopic precision to the asymptotic limit of large separation. A new set of potential energy curves and electronic dipole transition moments for the lowest electronic states of the H–He system were developed to account accurately for the behaviour of the atomic interactions at all distances, from the chemical regime within 1 Å out to where the radiating H atoms are not significantly perturbed by their neighbours. We use a general unified theory of collision-broadened atomic spectral lines to describe a rigorous treatment of hydrogen Lyman α with these potentials and present a new study of its broadening by radiative collisions of hydrogen and neutral helium. These results enable ab initio modelling of radiative transport in DBA white dwarf atmospheres.

Beta version