Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(486), p. 1781-1795, 2019

DOI: 10.1093/mnras/stz941

Links

Tools

Export citation

Search in Google Scholar

Temporal correlation between the optical and γ-ray flux variations in the blazar 3C 454.3

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Blazars show optical and γ-ray flux variations that are generally correlated, although there are exceptions. Here we present anomalous behaviour seen in the blazar 3C 454.3 based on an analysis of quasi-simultaneous data at optical, ultraviolet, X-ray, and γ-ray energies, spanning about 9 yr from 2008 August to 2017 February. We have identified four time intervals (epochs), A, B, D, and E, when the source showed large-amplitude optical flares. In epochs A and B the optical and γ-ray flares are correlated, while in D and E corresponding flares in γ-rays are weak or absent. In epoch B the degree of optical polarization strongly correlates with changes in optical flux during a short-duration optical flare superimposed on one of long duration. In epoch E the optical flux and degree of polarization are anticorrelated during both the rising and declining phases of the optical flare. We carried out broad-band spectral energy distribution (SED) modelling of the source for the flaring epochs A,B, D, and E, and a quiescent epoch, C. Our SED modelling indicates that optical flares with absent or weak corresponding γ-ray flares in epochs D and E could arise from changes in a combination of parameters, such as the bulk Lorentz factor, magnetic field, and electron energy density, or be due to changes in the location of the γ-ray-emitting regions.

Beta version