Published in

Astronomy & Astrophysics, (636), p. A57, 2020

DOI: 10.1051/0004-6361/201937013

Links

Tools

Export citation

Search in Google Scholar

Gas-phase infrared spectroscopy of the rubicene cation (C26H14•+)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Infrared bands at 3.3, 6.2, 7.6, 7.8, 8.6, and 11.2 μm have been attributed to polycyclic aromatic hydrocarbons (PAHs) and are observed toward a large number of galactic and extragalactic sources. Some interstellar PAHs possibly contain five-membered rings in their honeycomb carbon structure. The inclusion of such pentagon defects can occur during PAH formation, or as large PAHs are eroded by photo-dissociation to ultimately yield fullerenes. Pentagon formation is a process that is associated with the bowling of the PAH plane, that is, the ability to identify PAH pentagons in space holds the potential to directly link PAHs to cage and fullerene structures. It has been hypothesized that infrared (IR) activity around 1100 cm−1 may be a spectral marker for interstellar pentagons. We present an experimentally measured gas-phase IR absorption spectrum of the pentagon-containing rubicene cation (C26H14•+) to investigate if this band is present. The NASA Ames PAH IR Spectroscopic Database is scrutinized to see whether other rubicene-like species show IR activity in this wavelength range. We find that a specific molecular characteristic is responsible for this IR band. Namely, the vibrational motion attributed to this IR activity involves pentagon-containing harbors. An attempt to find this specific mode in Spitzer observations is undertaken and tentative detections around 9.3 μm are made toward the reflection nebula NGC 7023 and the H II-region IRAS 12063-6259. Simulated emission spectra are used to derive upper limits for the contributions of rubicene-like pentagonal PAH species to the IR band at 6.2 μm toward these sources.

Beta version