Published in

Published in The Messenger vol. 172, (pp. 24-26), p. June 2018., 2018

DOI: 10.18727/0722-6691/5077

Links

Tools

Export citation

Search in Google Scholar

Constraining Convection in Evolved Stars with the VLTI

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We used the Precision Integrated-Optics Near-infrared Imaging ExpeRiment (PIONIER) at the Very Large Telescope Interferometer (VLTI) to image the stellar surface of the S-type Asymptotic Giant Branch (AGB) star π1 Gruis. The angular resolution of two milliarcseconds allowed us to observe the surface of this giant star in unprecedented detail. At the observed wavelength the stellar disc appears circular and dust-free. Moreover, the disc is characterised by a few bubbles of a convective nature. We determine the contrast, and the characteristic horizontal length-scale of the convective granules. The latter is determined, for the first time, directly from the image, without involving the usual geometric modelling that has been used in the literature. The measurements fall along empirical scaling relations between stellar parameters and convective sizes, which are determined on the basis of three-dimensional stellar convection models. Our results open up a new era for the characterisation of stellar convection in stars other than the Sun.

Beta version