Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(489), p. 699-706, 2019

DOI: 10.1093/mnras/stz2201

Links

Tools

Export citation

Search in Google Scholar

Gravitational wave emission from unstable accretion discs in tidal disruption events

Journal article published in 2019 by Martina Toscani ORCID, Giuseppe Lodato ORCID, Rebecca Nealon ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Gravitational waves can be emitted by accretion discs if they undergo instabilities that generate a time varying mass quadrupole. In this work we investigate the gravitational signal generated by a thick accretion disc of 1 M⊙ around a static supermassive black hole of 106 M⊙, assumed to be formed after the tidal disruption of a solar type star. This torus has been shown to be unstable to a global non-axisymmetric hydrodynamic instability, the Papaloizou–Pringle instability, in the case where it is not already accreting and has a weak magnetic field. We start by deriving analytical estimates of the maximum amplitude of the gravitational wave signal, with the aim to establish its detectability by the Laser Interferometer Space Antenna (LISA). Then, we compare these estimates with those obtained through a numerical simulation of the torus, made with a 3D smoothed particle hydrodynamics code. Our numerical analysis shows that the measured strain is two orders of magnitude lower than the maximum value obtained analytically. However, accretion discs affected by the Papaloizou–Pringle instability may still be interesting sources for LISA, if we consider discs generated after deeply penetrating tidal disruptions of main-sequence stars of higher mass.

Beta version