Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(492), p. 1318-1328, 2019

DOI: 10.1093/mnras/stz3534

Links

Tools

Export citation

Search in Google Scholar

Type II migration strikes back – an old paradigm for planet migration in discs

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT In this paper, we analyse giant gap-opening planet migration in proto-planetary discs, focusing on the type II migration regime. According to standard type II theory, planets migrate at the same rate as the gas in the disc, as they are coupled to the disc viscous evolution; however, recent studies questioned this paradigm, suggesting that planets migrate faster than the disc material. We study the problem through 2D long-time simulations of systems consistent with type II regime, using the hydrodynamical grid code fargo3d. Even though our simulations confirm the presence of an initial phase characterized by fast migration, they also reveal that the migration velocity slows down and eventually reaches the theoretical prediction if we allow the system to evolve for enough time. We find the same tendency to evolve towards the theoretical predictions at later times when we analyse the mass flow through the gap and the torques acting on the planet. This transient is related to the initial conditions of our (and previous) simulations, and is due to the fact that the shape of the gap has to adjust to a new profile, once the planet is set into motion. Secondly, we test whether the type II theory expectation that giant planet migration is driven by viscosity is consistent with our simulation by comparing simulations with the same viscosity and different disc masses (or vice versa). We find a good agreement with the theory, since when the discs are characterized by the same viscosity, the migration properties are the same.

Beta version