Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S345(14), p. 257-258, 2018

DOI: 10.1017/s1743921318008396



Export citation

Search in Google Scholar

Resolving the origin of hydrogen-line emission in YSOs with near-infrared interferometry

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


AbstractThe origin of the Brγ-line emission in Herbig Ae/Be stars is still an open question and might be related e.g., to a disc wind or the stellar magnetosphere. The study of the continuum and Brγ-emitting region of Herbig Ae/Be stars with high-spectral and high-spatial resolution gives great insights into the sub-au scale hydrogen gas distribution.We observed the Herbig Be star MWC 120 with the VLTI/AMBER instrument in different spectral channels across the Brγ line with a spectral resolution of R~1500. Using radiative transfer modeling we found a radius of the line emitting region of ~0.4 au that is only two times smaller than the K-band continuum region. This is consistent with a disc wind scenario rather than an origin of magnetospheric emission.We present near-infrared AMBER (R~12000) observations of the Herbig B[e] star MWC297 in the Brγ-line. We found that the near-infrared continuum emission is ~3.6 times more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged.

Beta version