Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S262(5), p. 248-256, 2009

DOI: 10.1017/s1743921310002863

Links

Tools

Export citation

Search in Google Scholar

Modeling high-redshift galaxies: what can we learn from high and ultra-high resolution hydrodynamical simulations?

Journal article published in 2009 by J. Devriendt, A. Slyz, L. Powell, C. Pichon, R. Teyssier ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe present results from a high resolution cosmological galaxy formation simulation called Mare Nostrum and a ultra-high resimulation of the first 500 million years of a single, Milky Way (MW) sized galaxy. Using the cosmological run, we measure UV luminosity functions and assess their sensitivity to both cosmological parameters and dust extinction. We find remarkably good agreement with the existing data over the redshift range 4 < z < 7 provided we adopt the favoured cosmology (WMAP 5 year parameters) and a self-consistent treatment of the dust. Cranking up the resolution, we then study in detail a z = 9 protogalaxy sitting at the intersection of cold gas filaments. This high-z MW progenitor grows a dense, rapidly spinning, thin disk which undergoes gravitational fragmention. Star formation in the resulting gas clumps rapidly turns them into globular clusters. A far reaching galactic wind develops, co-powered by the protogalaxy and its cohort of smaller companions populating the filaments. Despite such an impressive blow out, the smooth filamentary material is hardly affected at these redshifts.

Beta version