Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz3190

Links

Tools

Export citation

Search in Google Scholar

Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We investigate the properties of the host galaxies of compact binary mergers across cosmic time, by means of population-synthesis simulations combined with galaxy catalogues from the EAGLE suite. We analyze the merger rate per galaxy of binary neutron stars (BNSs), black hole–neutron star binaries (BHNSs) and binary black holes (BBHs) from redshift zero up to redshift six. The binary merger rate per galaxy strongly correlates with the stellar mass of the host galaxy at any redshift considered here. This correlation is significantly steeper for BNSs than for both BHNSs and BBHs. Moreover, we find that the merger rate per galaxy depends also on host galaxy’s star formation rate and metallicity. We derive a robust fitting formula that relates the merger rate per galaxy with galaxy’s star formation rate, stellar mass and metallicity at different redshifts. The typical masses of the host galaxies increase significantly as redshift decreases, as a consequence of the interplay between delay time distribution of compact binaries and cosmic assembly of galaxies. Finally, we study the evolution of the merger rate density with redshift. At low redshift (z ≤ 0.1) early-type galaxies give a larger contribution to the merger rate density than late-type galaxies. This trend reverts at z ≥ 1.

Beta version