Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(488), p. 2629-2643, 2019

DOI: 10.1093/mnras/stz1887

Links

Tools

Export citation

Search in Google Scholar

Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Recent observations have successfully detected UV-bright and infrared-bright galaxies in the epoch of reionization. However, the origin of their radiative properties has not been understood yet. Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present predictions of multiwavelength radiative properties of the first galaxies at z ∼ 6–15. Using zoom-in initial conditions, we investigate three massive galaxies and their satellites in different environment and halo masses at z = 6: $M_{\rm h}= 2.4\times 10^{10}\,$, $1.6\times 10^{11}\, $, and $0.7\times 10^{12}\, {\rm M_{⊙ }}$. We find that most of the gas and dust are ejected from star-forming regions by supernova feedback, which allows the UV photons to escape. We show that the peak of the spectral energy distribution (SED) rapidly changes between UV and infrared wavelengths on a time-scale of ∼ 100 Myr due to intermittent star formation and feedback, and the escape fraction of UV photons fluctuates in the range of 0.2–0.8 at z < 10 with a time-averaged value of 0.3. When dusty gas covers the star-forming regions, the galaxies become bright in the observed-frame sub-millimeter wavelengths. We predict the detectability of high-z galaxies with the Atacama Large Millimeter Array (ALMA). For a sensitivity limit of $0.1\, {\rm mJy}$ at $850\, {\rm μ m}$, the detection probability of galaxies in haloes $M_{\rm h}\gtrsim 10^{11}\, \, {\rm M_{⊙ }}$ at z ≲ 7 exceeds fifty per cent. We argue that supernova feedback can produce the observed diversity of SEDs for high-z galaxies.

Beta version