Published in

Zenodo, 2016

DOI: 10.5281/zenodo.60468

Links

Tools

Export citation

Search in Google Scholar

Understanding The Near Infrared Spectrum Of Quasars

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The rest-frame near infrared (NIR) is a key spectral range for understanding the physics of AGN, but progress has been hindered by the difficulty in defining the NIR spectrum of the accretion disk and removing contamination from stellar emission in the host galaxy. In this talk I will present the analysis of a sample of 85 luminous (L3µm>10^45.5 erg/s) quasars with rest-frame NIR spectroscopy from AKARI and Spitzer/IRS. Their high luminosity allows a direct determination of the NIR shape of the quasar spectrum clean from host galaxy emission. We find that the entire UV-to-MIR SED can be accurately reproduced with a semi-empirical disk+dust model that uses a single template for the accretion disk and two blackbody components (hot and warm) for the dust. The observed diversity in individual SEDs can be accounted for by varying levels of extinction affecting the disk component and differences in the relative luminosities of the disk and dust components. We present a new quasar template [0.1-10µm] as well as separate templates for the disk and dust components, and conclude that previous templates based on less luminous quasars suffer from contamination by stellar emission in the host galaxy, which accounts for up to ~30% of the flux at 1µm. We also perform the first ever measurement of the Paschen_α emission in a large sample of luminous quasars and find that the Paschen_α to optical continuum luminosity ratio is boosted in our sample compared to less luminous quasars.

Beta version