Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S297(9), p. 197-202, 2013

DOI: 10.1017/s1743921313015846

Links

Tools

Export citation

Search in Google Scholar

Herschel/HIFI Discoveryof a Far-Infrared DIB Analog

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Herschel Space Observatory carried out observations at far-infrared wavelengths, which significantly increased our knowledge of the interstellar medium and the star-formation process in the Milky Way and external galaxies, as well as our understanding of astrochemistry.Absorption features, known, e.g., from observations at millimeter wavelengths, are more commonly observed in the far-infrared, in particular toward strong dust continuum sources. The lowest energy transitions are not only observed at LSR-velocities related to the source, but often also at velocities associated with diffuse molecular clouds along the line of sight toward the background source.Unbiased spectral line surveys of the massive and very luminous Galactic Center sources Sagittarius B2(M) and (N) were carried out across the entire frequency range of the high-resolution Heterodyne Instrument for Far-Infrared Astronomy (HIFI). An absorption feature was detected toward both sources at about 617.531 GHz, corresponding to 20.599 cm−1, 485.47 μm, or 2.5539 meV. This feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the sources themselves. The carriers of at least a substantial part of the DIBs are thought to reside in the diffuse interstellar medium. Therefore, we consider this absorption feature to be a far-infrared DIB analog.Subsequent dedicated observations confirmed that the line is present only in the foreground clouds on the line of sight toward other massive star-forming regions in the Galactic disk. There is indication that the feature has substructure, possibly of fine or hyperfine nature. Attempts to assign the feature to atomic or molecular species have been unsuccessful so far.

Beta version