Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S276(6), p. 517-518, 2010

DOI: 10.1017/s1743921311021041

Links

Tools

Export citation

Search in Google Scholar

Planetesimal and protoplanet dynamics in a turbulent protoplanetary disk

Journal article published in 2010 by Chao-Chin Yang, Mordecai-Mark Mac Low ORCID, Kristen Menou
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractDue to the gravitational influence of density fluctuations driven by magneto-rotational instability in the gas disk, planetesimals and protoplanets undergo diffusive radial migration as well as changes of other orbital properties. The magnitude of the effect on particle orbits has important consequences for planet formation scenarios. We use the local-shearing-box approximation to simulate an ideal, isothermal, magnetized gas disk with vertical density stratification and simultaneously evolve numerous massless particles moving under the gravity of the gas and the host star. Although the results converge with resolution for fixed box dimensions, we find there exists no convergence of the response of the particles to the gravity of the gas against the horizontal box size, up to 16 disk scale heights. This lack of convergence indicate that caution should be exercised when interpreting local-shearing-box models involving gravitational physics of magneto-rotational turbulence.

Beta version