Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, S280(7), p. 53-64, 2011

DOI: 10.1017/s1743921311024860

Links

Tools

Export citation

Search in Google Scholar

Interferometric Studies of Low-Mass Protostars

Journal article published in 2011 by Jes K. Jørgensen ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWith the advances in high angular resolution (sub)millimeter observations of low-mass protostars, windows of opportunities are opening up for very detailed studies of the molecular structure of star forming regions on wide range of spatial scales. Deeply embedded protostars provide an important laboratory to study the chemistry of star formation – providing the link between dense regions in molecular clouds from which stars are formed, i.e., the initial conditions and the end product in terms of, e.g., disk and planet formation. High angular resolution observations at (sub)millimeter wavelengths provide an important tool for studying the chemical composition of such low-mass protostars. They for example constrain the spatial molecular abundance variations – and can thereby identify which species are useful tracers of different components of the protostars at different evolutionary stages. In this review I discuss the possibilities and limitations of using high angular resolution (sub)millimeter interferometric observations for studying the chemical evolution of low-mass protostars – with a particular keen eye toward near-future ALMA observations.

Beta version