Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(490), p. 50-79, 2019

DOI: 10.1093/mnras/stz2430

Links

Tools

Export citation

Search in Google Scholar

Ingredients for solar-like systems: protostar IRAS 16293-2422 B versus comet 67P/Churyumov–Gerasimenko

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Our modern day Solar System has 4.6 × 109 yr of evolution behind it with just a few relics of its birth conditions remaining. Comets are thought to be some of the most pristine tracers of the initial ingredients that were combined to produce the Earth and the other planets. Other low-mass protostars may be analogous to our proto-Sun and hence, could be used to study the building blocks necessary to form Solar-like systems. This study tests this idea on the basis of new high sensitivity, high spatial resolution ALMA data on the protoplanetary disc-scales (∼70 au) of IRAS 16293-2422 and the bulk composition of comet 67P/Churyumov-Gerasimenko, as determined for the first time with the unique in situ monitoring carried out by Rosetta. The comparative analysis of the observations from the Protostellar Interferometric Line Survey (PILS) and the measurements made with Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) shows that the relative abundances of CHO-, N-, and S-bearing molecules correlate, with some scatter, between protostellar and cometary data. A tentative correlation is seen for the first time for P- and Cl-bearing compounds. The results imply that the volatile composition of cometesimals and planetesimals is partially inherited from the pre- and protostellar phases of evolution.

Beta version