Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2019

DOI: 10.1093/mnras/stz2892

Links

Tools

Export citation

Search in Google Scholar

Discovery of an Edge-on Galaxy with X-shaped Bi-cone — SDSS J171359.00+333625.5

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Using the integral field unit (IFU) data from Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we study the kinematics of gas and stellar components in an edge-on Seyfert 2 galaxy, SDSS J171359.00+333625.5, with X-shaped bi-conical outflows. The gas and stars therein are found to be counter-rotating, indicating that the collision between the inner and external gas might be an effective way to dissipate the angular momentum, which leads to remarkable gas accretion into the galaxy center. Large [O iii]λ5007 equivalent width and AGN-like line ratio in the large bi-conical region suggest that the gas is ionized by the central AGN. The gas velocity in the bi-cone region shows that ionized gas is receding relative to the galaxy center, which could be the joint effect of inflows, outflows and disk rotation. We are probably witnessing the case where a great amount of gas in the disk is being efficiently accreted into the central black hole, and the AGN-driven galactic winds are blown out along the bi-cone. The kinematics of oxygen, including rotation velocity and velocity dispersion, is different from other elements, like hydrogen, nitrogen and sulfur. The rotation velocity estimated from oxygen is slower than from other elements. The velocity dispersion of other elements follows galactic gravitational potential, while the velocity dispersion of oxygen stays roughly constant along the galactic major-axis. The further advanced observations, e.g. of cold gas or with an IFU of higher spatial resolution, are required to better understand this object.

Beta version